Determination of Biokinetic Coefficient for Membrane Bioreactor Process in Treating Oily Wastewater

> Muhammad H. Al-Malack Muhammad Muhitur Rahman Alaadin A. Bukhari

Civil Engineering Department King Fahd University of Petroleum & Minerals

Presentation Outline

Introduction

> Research Objectives

Materials and Methods

> Results and Discussion

Conclusion

Introduction

Characteristics and Sources of Oily Waste

- Petroleum is an oily liquid, which typically contains C, H₂, S, N, O₂ and also Fe, Ca, K, Na, I, As and other elements.
- > The combined refinery wastes may contain
 - crude oil
 - various dissolved or suspended organic compounds discharged in liquors
 - sludges from the various stages of processing

Wastes from the oil refineries comes from leaks, spills, tank draw-off, and other sources such as cooling waters.

Introduction (Cont'd)

Basics of CF-MBR Process

Conventional wastewater treatment

Conventional treatment with tertiary membrane filtration

Treatment with membrane bioreactor

Introduction (Cont'd)

Biochemical Kinetics of MBR System

Kinetic study of MBR is needed to understand the interaction between biological and filtration unit

Basic Equations are based on Monod (1949) equation

Major factors affecting the biokinetic coefficients are (Rozich and Gaudy, 1992)

- Reactor growth rate
- Waste composition
- Temperature
- Population diversity

Introduction (Cont'd)

Substrate	Basis of analysis	Y (mg/mg)	k _d (day ⁻¹)	μ _m (day ⁻¹)	K _s (mg /l)	Treatment system	Ref
Municipal waste	COD	0.5-0.62	0.025-0.48	7.4- 18.5	11-181	ASP	Gaudy & Gaudy, 1980
Municipal waste	COD	0.4-0.8	0.025-0.075	2-10	15-70	ASP	Metcalf & Eddy, 1991
Municipal waste	COD	0.48-0.6	0.05-0.16	5.6- 8.10	250- 3720	CF-ASP	El-Kebir, 1991
Synthetic waste	COD	0.49- 0.58	0.03-0.15	1.28- 6.46	289- 2933	SM-ASP	Kaly andurg, 2003
Industrial waste	COD	0.3-0.72	0.05-0.18	0.47- 1.07	850- 5200	ASP	Suman Raj, 2004

Research Objectives

To study the interaction between the biological and filtration unit of CF-MBR at MLSS concentration of 5000 mg/l. For this purpose following biokinetic coefficients were determined:

- Saturation constant (K_s)
- Specific growth rate (μ)
- Yield coefficient (Y) and
- Endogenous decay coefficient (k_d)

Materials and Methods

Membrane Characteristics

Configuration	Hollow Tubular ceramic membrane
Material	Alumina
Pore size	0.2 μm
Outer diameter	10 mm
Inner diameter	7 mm
Length	5 x 20 cm
Cross-sectional area	38.5 mm ²
Total Surface area	0.022 m ²
Effective Surface area	0.019 m ²
Maximum Thermal stability	120 ⁰ C
Maximum Filtration pressure	15 bar
pH Range	1-14

Materials and Methods (Cont'd)

Influent Substrate

- > The oily waste was collected from a petroleum refinery
- > The oil content was 160×10^3 mg/l
- > The COD varied from 0.37×10^6 to 2.3×10^6 mg/l
- Essential nutrients were added in the bioreactor consisting of glucose, peptone and east extract
- The influent COD calculation was based on the mass loading per day (gm/day) rather than the concentration (mg/l)

Experimental Procedure Layout

Results and Discussion

Determination of Biokinetic Coefficients

Assumptions:

- Reactor is completely mixed
- Reactor volume is constant
- Complete rejection of MLSS
- No microbial solids in influent substrate

Substrate Balance

_	_	Rate of		
Rate of change of	Rate of		Rate of	Substrate
Substrate in the	input of	removal	removal	lost during
reactor	the feed	due to -	due to	- Deliberate
	substrate	biomass	washout	wastage
		utilization		

$$V\frac{dS}{dt} = QS_0 - \mu\frac{XV}{Y} - S(Q - Q_w) - Q_wS$$

$$\frac{Q}{VX}(S_0 - S) = \frac{1}{Y}\frac{1}{SRT} + \frac{k_d}{Y}$$

For steady state condition

Biomass Balance

Rate of change of biomass in the reactor Rate ofRate of loss due toincrease due toendogenousgrowthrespiration

Deliberate wastage

$$V\frac{dX}{dt} = \mu XV - k_d XV - Q_w X$$

$$\frac{SRT}{1 + (SRTk_d)} = \frac{K_s}{\mu_m} \left(\frac{1}{S}\right) + \frac{1}{\mu_m}$$

For steady state condition

Steady state data at MLSS 5000 mg/l

Steady State Period	Q	X _{avg}	S	1/S	QS ₀	QS	SRT	Q(S ₀ - S)/VX	SRT/ (1+SRT*k _d)
day	1/d	mg/l	mg/l	l/mg	gm/d	gm/d	day	1/day	day
18-22	38	5458	72	0.0139	41.110	2.741	30.00	0.35	9.68
23-26	36	5300	84	0.0119	45.469	3.003	25.42	0.40	9.15
38-41	33	5393	109	0.0092	57.861	3.590	15.30	0.50	7.39
48 - 51	19	5511	120	0.0083	64.693	2.281	11.00	0.57	6.21

Determination of Y and k_d at MLSS 5000 mg/l

Determination of μ_m and K_S at MLSS 5000 mg/l

Summary of Kinetic Coefficients for CF-MBR at MLSS concentration of 5000 mg/l and Other Investigations.

MLSS (mg/l)	Y (mg/mg)	k _d (day-1)	μ _m (day ⁻¹)	K _S (mg COD/l)
Current Study	0.276	0.07	0.653	396.62
Municipal Waste	0.4 -0.8	0.025 - 0.48	2-18.5	11 – 3720
Industrial Waste	0.3-0.72	0.045	0.77	2980.5

Relationship Between Effluent COD and SRT

Simulated Effluent COD for MLSS concentration of 5000 mg/l

Conclusions

- \checkmark Kinetic coefficients Y, k_d , μ_m and K_S were evaluated and were found to be within those reported in literature.
- The simulation study showed good agreement between model predictions and experimental data.
- The model can be used to simulate and investigate different operational strategies.

